SOME FUNDAMENTAL CONCEPTS OF PROGRAMMING

CSE 130: Introduction to Programming in C Stony Brook University

"COMPUTER SCIENCE IS NO MORE ABOUT COMPUTERS THAN ASTRONOMY IS ABOUT TELESCOPES." — E. W. DIJKSTRA

THE NATURE OF COMPUTATION

- ➤ Computation the solution of a complex problem by repeated systematic execution of a series of simple operations
 - ➤The problem must be defined exactly and unambiguously
- ➤ Computer programming is simply one way to automate (or mechanize) this process

HOW DO WE DESCRIBE A COMPUTATION IN SUFFICIENT DETAIL THAT THE STEPS CAN BE CARRIED OUT BY A MACHINE?

CHARACTERISTICS OF AN ALGORITHM

- ➤ A precise statement of the starting conditions
- ➤ A specification of the final state (a termination condition)
- ➤ A detailed description of the (simple) individual steps that will help move the algorithm forward toward the final state
 - ➤These steps are symbol manipulations

ALGORITHM EXAMPLES

- ➤ Grandma's recipe for chocolate chip cookies
- ➤ Instructions for assembling a piece of furniture
- ➤ Driving directions
- ➤ Putting together a class schedule
- ➤ Euclid's process for finding the Greatest Common Divisor of two numbers

EXAMPLE: COOKIE RECIPE

• • •

- 2 cups butter
- 4 cups flour
- 2 tsp. baking soda
- 2 cups granulated sugar
- 2 cups brown sugar
- 5 cups blended oatmeal (measure oatmeal and blend in blender to a fine powder)
- 24 oz. chocolate chips
- 1 tsp. salt
- 1 8 oz. Hershey bar (grated)
- 4 eggs
- 2 tsp. baking powder
- 3 cups chopped nuts (your choice)
- 2 tsp. vanilla

Source: http://urbanlegends.about.com/od/fooddrink/a/cookie_recipe.htm

COOKIE RECIPE (CONT'D)

- Cream the butter and both sugars.
- Add eggs and vanilla; mix together with flour, oatmeal, salt, baking powder, and soda.
- ➤ Add chocolate chips, Hershey bar and nuts.
- Roll into balls and place two inches apart on a cookie sheet.
- ➤ Bake for 10 minutes at 375 degrees.

- ➤ Once we have an algorithm, we need to express it in a form that the computer can understand
- ➤ Computers are designed to understand a specific set of instructions (operations)..

MACHINE LANGUAGE

- > Set of instructions designed into the CPU
 - ➤ A CPU is basically a (very) complex system of logic gates (transistors and semiconductors)
- ➤ Internally, each instruction is represented as a sequence of bits (1s and 0s)
- ➤ Here's an example of a simple machine language program:

1100 0000 0000 0000 0100 0001

0111 0000 0000 0000 0010 0011

1110 0001 0000 0000 0000 0101

THE NEED FOR TRANSLATION

- ➤ Computers (CPUs) only speak binary (1s and 0s)
- ➤ People don't speak binary well; we prefer higher-level languages like C
- ➤ High(er)-level languages are much more human-friendly
 - ➤ A single high-level instruction often translates to a sequence of multiple machine instructions
- ➤ A *compiler* is a special computer program that translates high-level languages into machine language (binary)
 - ➤ On the way to compilers, we developed a special instruction format known as assembly language

Start Here source program Edit source code file.c Compile (and object program assemble) source code file.o Link with libraries executable and other object programs a.out Execute

THE COMPILATION PROCESS

- ➤ A *text editor* is used to enter the C program into a file
 - ➤ By convention, C source code files end with .c
- ➤ The *compiler* checks for errors and translates the C code into assembly language
- ➤ The assembler translates the assembly code into binary object code
- ➤ The *linker* joins together multiple pieces of object code into a single executable object